
A 120dB dynamic range image sensor with single readout using in pixel HDR

CMOS Image Sensors for High Performance Applications Workshop *November 19, 2015*

<u>J. Caranana</u>, P. Monsinjon, J. Michelot, C. Bouvier, S. Cohet, P. Jourdain, P-A. Pinoncely, S. Caranhac, A.Menard

Grenoble HDR image

CNES workshop 2015 : CMOS image sensors for high performance applications

Outline

- Pyxalis
- Why HDR
- HDR solutions
- HDPYX sensor
- HDPYX experimental results
- Perspectives and summary
- Conclusion

Pyxalis in few words

- PYXALIS is a high-end CMOS Image Sensor supplier & Design house
- A few figures:

☐ Founded in: 2010

☐ Team: 20 people

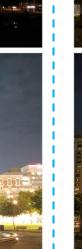
Experience: >150 man-year experience in CMOS image sensors

- Located in Moirans, France, in the «Grenoble Imaging Vallée»:
 - □ 700sqm offices, state of the art design center, full EO characterization

Why HDR

- HDR stands for high dynamic range
- In many applications such as
 - scientific
 - space
 - consumer
 - security
- The dynamic of the scene is very variable or even unknown
- Handling of high dynamic range and change of scene lightning is necessary to get correct images
- Several solutions have been developed through years

Example



No HDR

HDR: several solutions

- Multiple integration times
 - Typically used in digital photography
 - In general at least 2 images are needed
 - Risk of motion blur due to the different exposure events
- Adjustment of the full well capacity during integration
 - The reset level is modulated during integration time
 - The Qsat is modulated by the reset level
- Spatial variation of the exposure
 - Pixel sensitivity is patterned in the matrix (density filters, fill factor...)
 - Pattern (like a Bayer color filter) of different filtering factors
 - Reconstruction

HDR: several solutions

- Logarithmic sensor
 - In CMOS using a MOS in subthreshold
 - Subject to MOS subthreshold parameters dispersion
- Multiple readout gain
 - Several analog chains using different gains

HDR: several solutions

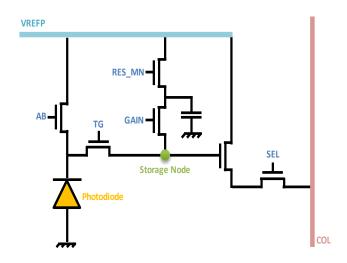
					- 8
HDR solution	Multiple integration times	Well adjustment	Spatial variation of exposure	Logarithmic	Multiple readout gain
DR					
high luminan	e /	7	7	7	7
low luminan	e same	same	same	worse	7
Linearity	Yes	No	Yes	No	Yes
CDS	Yes	No	Yes	No	Yes
SNR	+	-	-		+
Complexity					
Pix	el Low-medium	Low	Low	Med	Low
Reado	ut Low	Low	High	Low	High
Main drawbacks	In one frame only	Dispersion of the reset voltage can create artefact in reconstruction, if furtive event occurs during reduced well the signal is partially lost	Need for reconstruciton and interpolation, spatial resolution is reduced	Low sensitivity at low light levels	One output chain

HDPYX sensor

CNES workshop 2015 : CMOS image sensors for high performance applications

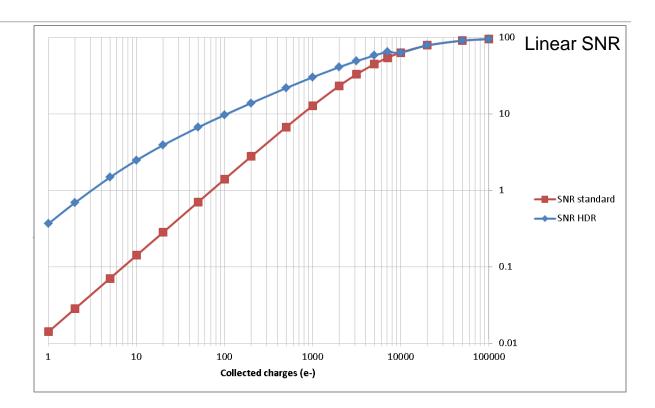
HDPYX: HDR sensor

- Multiple gain readout
 - With only one output conversion chain
 - In pixel gain
 - Automatically switching gain during readout
 - Integrated hdr reconstruction up to 92dB dynamic
- Multiple integration time
 - Interleaved line integration time in one frame
 - Programmable up to 128x ratio
 - Integrated hdr reconstruction up to 114 dB dynamic
- Combination of multiple gain and multiple integration time
 - ☐ Up to 120 dB dynamic range


HDPYX: specification

Resolution	3 MP (2800 x 1088)		
Pixel type	10μm 6T pixel		
Dynamic range	Up to 120dB linear dynamic range		
Read noise	2.5e- read noise		
ADC	14bits column ADC		
Frame rate	45 FPS @ Full-resolution		
Shutter mode	Rolling, snapshot, pipeline, global shutter low noise		
Data output	Configurable LVDS or CMOS, Up to 20 bits data		
Readout modes	windowing, subsampling, ROI, flip, mirror, acquisition sequence programming		
Black reference for dark – FPN reduction	64 lines 64 columns of shielded pixels for dark		
Digital functions	CFPN correction, HDR reconstruction, HDR Tint interpolation		

HDPYX: pixel


- 6T pixel based on a classical 5T pixel
- Global or rolling shutter
- 2 gains in pixel

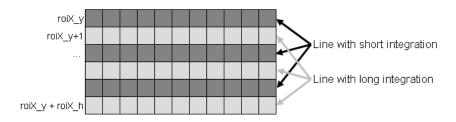
HDPYX: ADC

- Dedicated HDR ramp ADC
- Using a programmable threshold detector in the ADC the pixel gain is selected
 - ☐ If the signal in high CVF is not saturated we keep it
 - If the signal in high CVF is close to saturation, switch the gain and re-sample
- In high CVF (low signal level, low read noise), CDS is performed while on low CVF (high signal level, higher read noise) UDS is performed
 - When UDS is performed the signal level is high enough
 - The noise is dominated by shot noise


HDPYX: SNR in dual gain

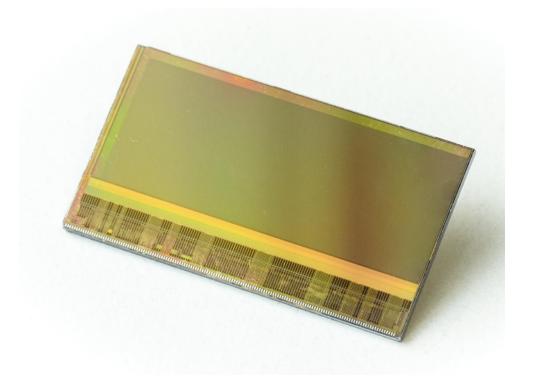
- To achieve the same Qsat with only one gain the noise is increased in the low illumination
- Using a dual gain in pixel, SNR is improved in the lowest part of the dynamic by reduction of the noise for low illumination

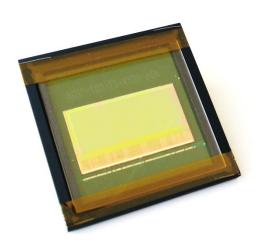
HDPYX: SNR in dual gain



- SNR is improved in the lowest part of the dynamic
- There is a small fall down of the SNR at the transition between the 2 gains
- It is needed to place this transition where the shot noise is high enough

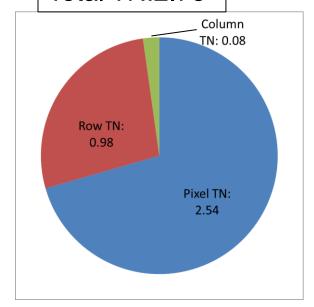
HDPYX: dual integration time

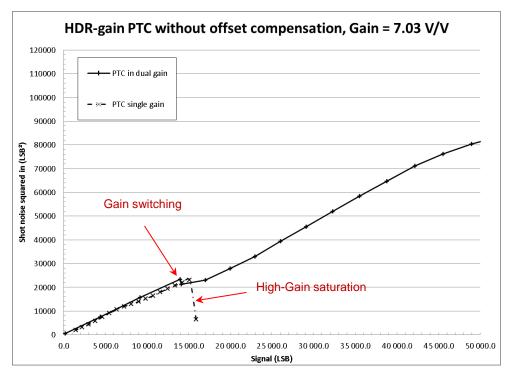

The pixel lines integrate for long or short time



- It is possible to program 2 ROI shifted from 1 line to alternate between long and short time on the same line
- Up to 128x between long and short integration time
- Only one readout is performed

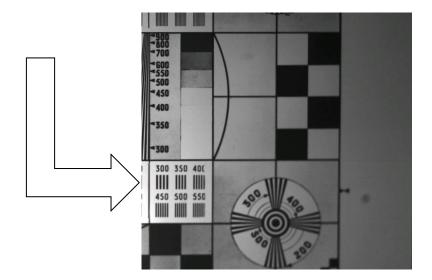
HDPYX: silicon

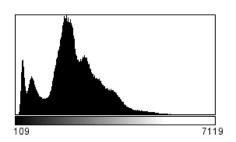


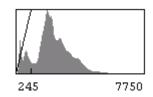

HDPYX: experimental results

- Measured pixel temporal noise of 2,5e- rms in high gain
- In pixel gain of 7 between high and low CVF

Total TN:2.7e-




HDPYX: HDR image in gain only



Contrast expansion to show the details

CNES workshop 2015 : CMOS image sensors for high performance applications

HDPYX: perspectives and summary

- Summary
 - 2,5e- rms pixel read noise / 70ke- full well lin
 - In pixel gain of 7 (so 89dB dynamic range in dual gain)
 - Up to 120 dB using HDR combined solutions
 - Linear solution (compatible with color, and digital processing)
- Future versions are planned
 - Backside illuminated version
 - High thickness epi for low energy X-Rays sensitivity

Thanks for your attention!

CNES workshop 2015 : CMOS image sensors for high performance applications